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We must understand denitrification to simulate 
nitrate transport

Heterotrophic denitrification
4NO3

- + 5CH2O + 4H+

2N2 + 5CO2 + 7H2O

Autotrophic denitrification
14NO3

- + 5 FeS2 + 4H+

7N2 + 10SO4
2- + 5Fe2+ + 2H2O 

Denitrification requires
• Denitrifying bacteria
• Low oxygen conditions

(< 0.6 mg/L)
• An electron donor
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The Goal is to predict the future concentration of nitrate at a 
receptor (drinking water well)
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Dispersion: 
mechanical dispersion,
molecular diffusion

Advection: 
bulk groundwater
flow

Source/sinks: 
mass loading, 
reactions

Rate of nitrate change
at a given receptor

= + +

Local groundwater 
velocity:
(Darcy’s Law; age 
gradient)

Denitrification rate 
expression:
microbial kinetics

Parameters that may vary in space and hence 
will be modeled stochastically

Source loading:
nitrate migration 
to the water table



Quantifying denitrification requires 
a multi-disciplinary approach

Characterization of groundwater flow
• Historical and current WLs, pump tests
• Tritium-helium age dating 
• Stable isotopes of the water molecule
• Vadose zone instrumentation

Characterization of nitrate biogeochemistry & source
• Real-time quantitative PCR 
• Microbial kinetics
• Excess nitrogen
• Stable isotopes of nitrate

δ15N and δ18O of NO3

• Co-contaminants as source tracers

Modeling groundwater flow and chemistry
• Stochastic models (for spatial heterogeneity)
• Streamline & gridded flow & transport models
• Reactive transport



We are using a molecular biology approach to measuring 
denitrification rates in the field

Population-normalized 
denitrification rate
(µmol nitrate/time/cell,
determined in the laboratory)

Aquifer 
denitrification rate
(µM nitrate/time, input 
for transport model)

Denitrifier 
population
(# cells/volume from qPCR 
analysis of field sample)

X =

Population (# gene copies)* x 
Specific rate (rate/cell)** =

Potential Denitrification Rate

# mRNA copies* x 
Rate/mRNA copy** =

Actual denitrification rate

*  Real-time PCR 
analysis of 

aquifer sample
** Lab-determined

denitrification rate

DNA mRNA protein

NO2
- NO

Nitrite 
reductase 
(NirS, NirK)

Quantitative real-time PCR is a rapid, sensitive, and highly specific method that can be 
used to quantify denitrifying bacterial populations based on a diagnostic, functional gene.



Key Aspects of Method Development: An assay for denitrifier 
population & population-normalized denitrification rate constants

Quantitative real-time PCR:
Determining denitrifier populations 
• Determined sequence for an autotrophic

denitrification gene (nirS).
• High homology to heterotrophic nirS genes.
• We are now designing a functional test for 

denitrifier cell populations using qPCR. Gene sequences for denitrification gene

y = -0.365x + 3.0
R 2  = 0.999
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Denitrification rates are zero-order 
with respect to nitrate concentration.

The physical state of the electron acceptor 
(aqueous or solid) is major control on rate.



Excess nitrogen measurements distinguish 
denitrification from dilution

The end product of denitrification 
is molecular nitrogen (N2, g)
• Groundwater contains air above 

equilibrium solubility levels
• “Excess nitrogen” is the 

non-atmospheric N2 component 
due to denitrification

• The atmospheric component is 
determined from the dissolved Ar
concentration

Excess N2 allows quantification 
nitrate transformation
• F = 1 - residual/initial nitrate

Initial = residual + excess N2

• With age information, a bulk 
denitrification rate can be 
determined
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The excess nitrogen approach

Quad MS

pump

membrane inlet

sampletrap

Membrane inlet mass spectrometry
• Measures nitrogen, argon, 

oxygen, carbon dioxide, and 
methane

• Allows determination of excess 
nitrogen

• Fast, portable and inexpensive



Early results indicated that denitrification was taking place

Excess nitrogen 
(membrane inlet mass spectrometry)
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CPT (August 2-6, 2004)
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Several constituents were analyzed in the field during 
direct-push sampling CPT-1
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Field methods
• Nitrate “sticks”
• Horiba water quality meter

DO, Conductivity, Temp, pH, ORP
• MIMS: Excess N2, CO2, CH4, excess air

Samples
• Water samples: SS bailer (~500 mL)

3 VOA vials for MIMS
1 filtered 5 ml for IC
125-mL or 1-L plastic for nitrate 
isotopics

• Soil samples: 12-inch sections
RNA: Dry ice/ethanol dry ice (15-ml 
tube)
DNA: Dry ice or ice (plastic bag)

Shallow water = irrigation?
• High nitrate; no excess N2; high DO
• High excess air; high dissolved CO2

Deeper water = mixed canal/irrigation?
• Low or no nitrate; variable excess N2; low 

DO
• Very low excess air; low dissolved CO2



Results of Excess Nitrogen Analysis:

Water sample
DP1
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The same pattern occurs all across the dairy site.
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CPT-5
(upgradient site; NW corner)
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and pH follow predictable trends

We measured ORP, DO, pH, and other constituents
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Analytical results provide input for geochemical models

Dissolved CO2 is negatively correlated with pH
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Nitrogen and Oxygen Isotopes of Nitrate indicate 
nitrate source and denitrification
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Using nitrate co-contaminants as tracers
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24-Ethylcholest-5-en-3β-ol (24-Ethylcholesterol or β-Sitosterol)

24-Ethyl-5β-cholestan-3β-ol (24-Ethylcoprostanol)

24α-Ethyl-5α-cholestan-3β-ol (24-Ethylcholestanol or Stigmastanol)

24-Ethyl-5β-cholestan-3α-ol (24-Ethyl-epicoprostanol)

C29 Sterols

Method Development
• Solid Phase Extraction suitable for selected target analytes
• GC-MS 
• GC-ECD Dual column 
• LC-MS/MS

Field Studies
• Lagoon source characterization for fecal sterols
• Identified triazine herbicides
• Identified norflurazon and desmethylnorflurazon
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Herbicide-Chlorophyll/Carotenoid Pigment Inhibitor

Herbicides, pesticides, and fecal sterols are likely co-contaminants



Conclusions

Excess nitrogen is a fast, accurate 
method for identifying and quanitfying
denitrification in groundwater
Denitrification should be considered in 
CAFO regulations
15 new shallow monitoring wells 
installed in September 2004
• More accurate geochemical and isotopic 

data
• Mixing of irrigation and canal water (age 

dating)
Development of flow and transport 
models
• Canal and irrigation recharge to perched 

aquifer
• Use of CPT data as conditioning
• Integration of kinetic models
• Calibration to groundwater ages and 

measurements of 
DO, ORP, CO2, excess air and N2

• Reactive transport modeling using 
analytical results
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